Continuity of Maximal Monotone Sets in Banach Space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximality of Sums of Two Maximal Monotone Operators in General Banach Space

We combine methods from convex analysis, based on a function of Simon Fitzpatrick, with a fine recent idea due to Voisei, to prove maximality of the sum of two maximal monotone operators in Banach space under various natural transversality conditions.

متن کامل

Strong Convergence of an Iterative Sequence for Maximal Monotone Operators in a Banach Space

We first introduce a modified proximal point algorithm for maximal monotone operators in a Banach space. Next, we obtain a strong convergence theorem for resolvents of maximal monotone operators in a Banach space which generalizes the previous result by Kamimura and Takahashi in a Hilbert space. Using this result, we deal with the convex minimization problem and the variational inequality probl...

متن کامل

Maximality of Monotone Operators in General Banach Space

We establish maximality of the sum of two maximal monotone operators in general Banach space, assuming only the Rockafellar qualification assumption.

متن کامل

Monotone Cq Algorithm for Weak Relatively Nonexpansive Mappings and Maximal Monotone Operators in Banach Spaces

The purpose of this article is to prove strong convergence theorems for weak relatively nonexpansive mapping which is firstly presented in this article. In order to get the strong convergence theorems for weak relatively nonexpansive mapping, the monotone CQ iteration method is presented and is used to approximate the fixed point of weak relatively nonexpansive mapping, therefore this article a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1974

ISSN: 0002-9939

DOI: 10.2307/2039541